The generalized local Boltzmann equation is derived for the distribution function of energetic particles interacting with the thermal vibrations of the lattice. On using the Boltzmann collision term the particle energy losses A(&,) and the diffusion function B(EJ.) are obtained. The functions A ( e l ) and B(E,) have singularities (fracture, peak) connected with the difference of the contributions of the particles moving in the regimes of channeling, quasichanneling, and random motion. L'Cquation locale gCnCra1isi.e de Boltzmann est obtenue pour la fonction de la distribution des particules BnergCtiques cooperant avec les vibrations thermique du rBseau. Les pertes BnergBtiques des particules A(&,) et la fonction de diffusion B ( E~) sont obtenus sur la base du terme de collision de Boltzmann. Les fonctions A ( E~) et B ( E~) ont les particularitCs (fracture, pic) likes avec la diffBrence entre les contributions des particules mouvant dans le rBgime canale, quasicanale et dans le mouvement chaotique.