This paper discusses harvesting of low-power density incident plane waves for electronic devices in environments where it is difficult or impossible to change batteries and where the exact locations of the energy sources are not known. As the incident power densities vary over time and space, distributed arrays of antennas with optimized power-management circuits are introduced to increase harvested power and efficiency. Scaling in array size, power, dc load, frequency, and gain is discussed through three example arrays: a dual industrial-scientific-medical band Yagi-Uda array with a low-power startup circuit; a narrowband 1.96-GHz dual-polarized patch rectenna array with a reconfigurable dc output network designed for harvesting base-station power; and a broadband dual-polarized 2-18-GHz array with multi-tone performance. The efficiency of rectification and power management is investigated for incident power densities in the 1-100-W/cm range.