This study aims to optimize the structure of compact Plate-Fin Heat Exchangers (PFHE) by incorporating corrugated fins and validating their improved performance through numerical modeling and simulation. The results provide valuable insights for refining application-specific design guidelines and enhancing the performance of PFHEs. Using Computational Fluid Dynamics (CFD), the PFHE geometry was created in SolidWorks and Ansys Fluent, with fins modeled in three layers inside the heat exchanger both with and without a cover. To investigate the fins' performance, flow field, and heat transfer, fin thickness, entry velocities, and locations of water and air were varied across three wavelengths (10, 20, and 30) during the numerical investigation. The analysis focused on the variations in pressure, temperature, and fluid velocity within the heat exchanger. Key findings include the observation that temperature distribution is influenced by the velocities of both water and air, with the upper layer experiencing a temperature increase due to the warm fluid stream, while the opposite effect is observed near the bottom layer. Furthermore, fluid temperature variation in the depth direction is attributed to conductive heat transfer through side plates and convective heat transfer to the surroundings. The outcomes of this study have the potential to reduce the pressure difference generated during heat exchange and increase the thermal efficiency of PFHEs.