2004
DOI: 10.1016/j.combustflame.2004.01.014
|View full text |Cite
|
Sign up to set email alerts
|

Experimental evaluation of Markstein-number influence on thermoacoustic instability

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

3
30
0

Year Published

2006
2006
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 53 publications
(33 citation statements)
references
References 27 publications
3
30
0
Order By: Relevance
“…This was followed by low intensity primary acoustic oscillations (amplitude about 0.5 kPa) that, as in Kaskan's study, stabilised after an initial growth. This stabilisation created a planar flame propagating at the laminar burning velocity, also reported by Aldredge and Killingsworth (2004). With faster flames, secondary acoustic instability readily developed, with larger pressure amplitudes and more enhanced burning velocities.…”
Section: Introductionmentioning
confidence: 69%
See 3 more Smart Citations
“…This was followed by low intensity primary acoustic oscillations (amplitude about 0.5 kPa) that, as in Kaskan's study, stabilised after an initial growth. This stabilisation created a planar flame propagating at the laminar burning velocity, also reported by Aldredge and Killingsworth (2004). With faster flames, secondary acoustic instability readily developed, with larger pressure amplitudes and more enhanced burning velocities.…”
Section: Introductionmentioning
confidence: 69%
“…The contrasting behaviour of the rich i-octane flame, shown in Figure 9b, is discussed in the next section. Such reductions in D-L,T-D instability have been observed during flame propagation along tubes by Kaskan (1953), Searby (1992), and Aldredge and Killingsworth (2004). The peak value of u n of 2.19 m=s in Figure 8 occurred at about the peak value of the rate of change of heat release rate of 270 MW=s.…”
Section: Instabilities In Closed Vessel Explosions 1785mentioning
confidence: 82%
See 2 more Smart Citations
“…Hence, in this case the fractional increase in the burning speed of the quasi-planar flame above S L is a result of and equal to the fractional increase in the flame-surface area above A yz caused by the transient, nonuniform advection field U, as described earlier (Williams, 1985). Equation provides for more generally applicable results beyond the case of Huygens propagation (S N = S L ), accounting for variations of the reactant density and local normal propagation speed along the flame (e.g., caused by effects of local flow-field strain and flame-surface curvature) (Aldredge, 2005;Aldredge and Killingsworth, 2004;Aldredge and Williams, 1991;Clavin, 1985;Clavin and Garcia-Ybarra, 1983;Clavin and Williams, 1982;Joulin and Clavin, 1979;Kwon et al, 1992;Law, 1988;Lewis and von Elbe, 1961;Markstein, 1953Markstein, , 1964Markstein and Squire, 1955;Searby and Clavin, 1986;Sivashinsky, 1983;Tseng et al, 1993;Williams, 1985). Consider now the propagation of a wrinkled, quasi-planar surface described by x = f 0 (y, z, t).…”
Section: Introductionmentioning
confidence: 99%