2022
DOI: 10.14710/ijred.2023.45312
|View full text |Cite
|
Sign up to set email alerts
|

Experimental Evaluation of Thermohydraulic Performance of Tubular Solar Air Heater

Abstract: The thermohydraulic performance of a new design solar air heater (SAH) design was examined experimentally in this paper as a trial to improve the flat-plate SAH’s efficiency. A flat-plate solar air heater (FPSAH) and a jacketed tubular solar air heater (JTSAH) having similar dimensions were constructed to compare their thermal performance efficiencies. A band of Aluminum jacketed tubes   were arranged side by side in parallel to the airflow direction to form the absorber of a jacketed tubular solar air heater … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 49 publications
0
3
0
Order By: Relevance
“…}\right) $$ where U loss is heat loss coefficient (W/m 2 .K), its formula is found from Kalogirou 47 Ulossgoodbreak=1hrad.abs_glass+1normalhrad.glass_sky+normalhconv.glass_amb1$$ {U}_{loss}={\left[\frac{1}{{\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}\_\mathrm{glass}}}+\frac{1}{{\mathrm{h}}_{\mathrm{rad}.\mathrm{glass}\_\mathrm{sky}}+{\mathrm{h}}_{\mathrm{conv}.\mathrm{glass}\_\mathrm{amb}}}\right]}^{-1} $$ where hrad.absglass$$ {\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}-\mathrm{glass}} $$ is the radiative heat transfer coefficient between the glass cover and the absorber, calculated as: hrad.abs_glassgoodbreak=normalσ0.25em()Tabs.+Tglass()Tabs.2goodbreak+Tglass21normalεitalicabs+1normalεglass11$$ {\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}\_\mathrm{glass}}={\left[\frac{\upsigma\ \left({\mathrm{T}}_{\mathrm{abs}.+}{\mathrm{T}}_{\mathrm{glass}}\right)\left({\mathrm{T}}_{\mathrm{abs}. }^2+{\mathrm{T}}_{\mathrm{glass}}^2\right)}{\frac{1}{\upvarepsilon_{abs}}+\frac{1}{\upvarepsilon_{\mathrm{glass}}}-1}\right]}^{-1} $$ where hconv.0.25emglass_amb$$ {\mathrm{h}}_{\mathrm{conv}.\mathrm{glass}\_\mathrm{amb}} $$ is the convective heat transfer coefficient between the glass cover and ambient, calculated as 48 : …”
Section: Theoretical Formulationmentioning
confidence: 99%
See 2 more Smart Citations
“…}\right) $$ where U loss is heat loss coefficient (W/m 2 .K), its formula is found from Kalogirou 47 Ulossgoodbreak=1hrad.abs_glass+1normalhrad.glass_sky+normalhconv.glass_amb1$$ {U}_{loss}={\left[\frac{1}{{\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}\_\mathrm{glass}}}+\frac{1}{{\mathrm{h}}_{\mathrm{rad}.\mathrm{glass}\_\mathrm{sky}}+{\mathrm{h}}_{\mathrm{conv}.\mathrm{glass}\_\mathrm{amb}}}\right]}^{-1} $$ where hrad.absglass$$ {\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}-\mathrm{glass}} $$ is the radiative heat transfer coefficient between the glass cover and the absorber, calculated as: hrad.abs_glassgoodbreak=normalσ0.25em()Tabs.+Tglass()Tabs.2goodbreak+Tglass21normalεitalicabs+1normalεglass11$$ {\mathrm{h}}_{\mathrm{rad}.\mathrm{abs}\_\mathrm{glass}}={\left[\frac{\upsigma\ \left({\mathrm{T}}_{\mathrm{abs}.+}{\mathrm{T}}_{\mathrm{glass}}\right)\left({\mathrm{T}}_{\mathrm{abs}. }^2+{\mathrm{T}}_{\mathrm{glass}}^2\right)}{\frac{1}{\upvarepsilon_{abs}}+\frac{1}{\upvarepsilon_{\mathrm{glass}}}-1}\right]}^{-1} $$ where hconv.0.25emglass_amb$$ {\mathrm{h}}_{\mathrm{conv}.\mathrm{glass}\_\mathrm{amb}} $$ is the convective heat transfer coefficient between the glass cover and ambient, calculated as 48 : …”
Section: Theoretical Formulationmentioning
confidence: 99%
“…where h conv: glass_amb is the convective heat transfer coefficient between the glass cover and ambient, calculated as 48 :…”
Section: Thermal Lossesmentioning
confidence: 99%
See 1 more Smart Citation