Pathogen infection is typically costly to hosts, resulting in reduced fitness. However, pathogen exposure may also come at a cost even if the host does not become infected. These fitness reductions, referred to as “resistance costs”, are inducible physiological costs expressed as a result of a trade‐off between resistance to a pathogen and aspects of host fitness (e.g., reproduction). Here, we examine resistance and infection costs of a generalist fungal pathogen (Metschnikowia bicuspidata) capable of infecting a number of host species. Costs were quantified as reductions in host lifespan, total reproduction, and mean clutch size as a function of pathogen exposure (resistance cost) or infection (infection cost). We provide empirical support for infection costs and modest support for resistance costs for five Daphnia host species. Specifically, only one host species examined incurred a significant cost of resistance. This species was the least susceptible to infection, suggesting the possibility that host susceptibility to infection is associated with the detectability and size of resistance cost. Host age at the time of pathogen exposure did not influence the magnitude of resistance or infection cost. Lastly, resistant hosts had fitness values intermediate between unexposed control hosts and infected hosts. Although not statistically significant, this could suggest that pathogen exposure does come at some marginal cost. Taken together, our findings suggest that infection is costly, resistance costs may simply be difficult to detect, and the magnitude of resistance cost may vary among host species as a result of host life history or susceptibility.