Abstract:The dynamics of a model, originally proposed for a type of instability in plastic flow, has been investigated in detail. The bifurcation portrait of the system in two physically relevant parameters exhibits a rich variety of dynamical behaviour, including period bubbling and period adding or Farey sequences. The complex bifurcation sequences, characterized by Mixed Mode Oscillations, exhibit partial features of Shilnikov and Gavrilov-Shilnikov scenario. Utilizing the fact that the model has disparate time scales of dynamics, we explain the origin of the relaxation oscillations using the geometrical structure of the bent-slow manifold. Based on a local analysis, we calculate the maximum number of small amplitude oscillations, s, in the periodic orbit of L s type, for a given value of the control parameter. This further leads to a scaling relation for the small amplitude oscillations. The incomplete approach to homoclinicity is shown to be a result of the finite rate of 'softening' of the eigen values of the saddle focus fixed point. The latter is a consequence of the physically relevant constraint of the system which translates into the occurrence of back-to-back Hopf bifurcation. PACS number(s): 05.45. Ac,