In this work, we effectuated the numerical simulations of the phase dynamics of an array of Josephson junctions taking into account the capacitive coupling between the neighboring junctions and the diffusion current in the stack. We observed that, if we increase the coupling and the dissipation parameters, the IV characteristic changes qualitatively from the IV characteristics studied before. For currents greater than the critical one, we obtained an additional branch in the IV characteristics. This branch is characterized by a lower voltage than the outermost one. Moreover, we obtained an additional charging of the superconducting layers in the IV region for currents greater than the critical one. We studied the time evolution of this charging by the means of Fast Fourier Transform. We proved that the charge density wave associated with this charging has a complex spectral structure. In addition, we analyzed the behavior of the system for different boundary conditions, appropriate to different experimental setups.