Analytical formulas are derived, for the cross spectral density matrix of electromagnetic nonuniformly correlated (EMUNC) beams, with astigmatic aberration propagating through oceanic turbulence. We investigate the effects of astigmatism on the spectral density, and the spectral degree of polarization, in great detail. It can be seen that, unlike for an aberration-free case, the lateral shifted intensity maximum (of an astigmatic EMUNC beam) does not return back to the on-axis position, after propagating at sufficiently large distances in the turbulence. Furthermore, in the far-zone, the deviation of its maximum value (from the optical axis) gradually increases, in accordance with growing propagation distance.