(2016) Local versus global strategies in multi-parameter estimation. Physical Review A, 94 (6). a2312. ISSN 1050ISSN -2947 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/65580/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.
Copyright and reuse:Sussex Research Online is a digital repository of the research output of the University.Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. We consider the problem of estimating multiple phases using a multimode interferometer. In this setting we show that while global strategies that estimate all the phases simultaneously can lead to high precision gains, the same enhancements can be obtained with local strategies in which each phase is estimated individually. A key resource for the enhancement is shown to be a large particle-number variance in the probe state, and for states where the total particle number is not fixed, this can be obtained for mode-separable states, and the phases can be read out with local measurements. This has important practical implications because local strategies are generally preferred to global ones for their robustness to local estimation failure, flexibility in the distribution of resources, and comparatively easier state preparation. We obtain our results by analyzing two different schemes: the first uses a set of interferometers, which can be used as a model for a network of quantum sensors, and the second looks at measuring a number of phases relative to a reference, which is concerned primarily with quantum imaging.