In this article we describe two new complete genomic sequences of Old World Arenaviruses: the Mopeia (MOP) virus and the reassortant MOP/LAS virus, clone 29, or ML29. This reassortant has the large (L) RNA from MOP virus and the small (S) RNA from Lassa (LAS) virus, Josiah strain. Recent studies showed that the ML29 virus is not pathogenic for mice, guinea pigs, or macaques, can completely protect guinea pigs from Lassa virus, and elicit vigorous cell-mediated immunity in immunized monkeys (Lukashevich, I. S., Patterson, J., Carrion, R., Moshkoff, D., Ticer, A., Zapata, J., Brasky, K., Geiger, R., Hubbard, G. B., Bryant, J., and Salvato, M. S., J Virol 79, [13934][13935][13936][13937][13938][13939][13940][13941][13942] 2005). This is a molecular characterization of a reassortant virus, which has been put forward as a live attenuated vaccine candidate against Lassa Fever. Sequence analysis of this reassortant virus revealed 5 non-conservative amino acid substitutions that distinguished it from the parental LAS and MOP viruses. Three substitutions were found outside the conserved RNA-dependent RNA polymerase (RdRp) motifs. A fourth substitution was located between the glycoprotein (GPC)-cleavage site and the putative fusion peptide of GP2. The nucleocapsid protein (NP) contained a fifth substitution in the carboxyl-terminal region of the protein. Two mutations were found within each non-coding terminus of the L segment and one mutation was located in the 3′ non-coding region of the S segment of the MOP/LAS virus. ML29 mutations in its genomic termini may have implications for the genetic stability and replication efficiency of ML29 reassortant.