In this work, the open-source spectral/hp element framework Nektar++ (www.nektar.info) is coupled with the Antares library (www.cerfacs.fr/antares/) to predict noise from a subsonic jet. Nektar++ uses the high-order discontinuous Galerkin method to solve the compressible Navier-Stokes equations on unstructured grids. Unresolved turbulent scales are modeled using an implicit Large Eddy Simulation approach. In this approach, the favourable dissipation properties of the discontinuous Galerkin method are used to remove the highest resolved wavenumbers from the solution. For time-integration, an implicit, matrix-free, Newton-Krylov method is used. To compute the far-field noise, Antares solves the Ffowcs Williams -Hawkings equation for a permeable integration surface in the time-domain using a source-time dominant algorithm. The simulation results are validated against experimental data obtained in the Doak Laboratory Flight Jet Rig, located at the University of Southampton.