This paper presents the commissioning of a newly designed High-Speed Low-Pressure Turbine (LPT) stage, operating at transonic exit Mach numbers and low Reynolds numbers, typical of modern geared turbofan (GTF) applications. At first, the characteristics of the research turbine are illustrated. The LPT stage is designed with an equal number of stationary vanes and shrouded rotor blades. The upstream and downstream hub cavities are purged and feature engine-realistic rim seals. The nominal operating condition of the stage is reported, along with a set of off-design conditions, obtained by varying rotor speed and purge mass flows. The second part of the paper describes the substantial revamping of the CT3 large-scale compression tube at Von Karman Institute for Fluid Dynamics, traditionally employed for high-pressure turbine testing, now adapted to host a high-speed LPT stage. The third section is an overview of the time-averaged and fast-response instrumentation. The dataset for each operating conditions includes aerothermal measurements in the annulus flow, in the hub cavities and in the shroud labyrinth seal. In addition, in this section is presented the design of an in-house traversing system for continuous probe traversing during the test. Finally, the outcome of the commissioning phase is discussed, with particular emphasis on the operating conditions stability, as well as on the inlet and cavity injection uniformity. The commissioning of a traversing system for continuous probe traversing during the short-duration test is also discussed.