Water scarcity is a global concern and poses significant problems to countries with arid and semi-arid climates, like Iran. Considering financial difficulties, a lack of knowledge about high-tech alternatives, low incomes, a lack of access to high-tech tools, and low maintenance capabilities in developing countries, solar still desalination is a decent technology for providing proper water, especially for rural areas. However, the low water-production rate using this method dictates a very vast area requirement for solar still farms in order to provide significant amounts of water. In this research, we proposed a mirror-enhanced solar still and mathematically compared its water-production rate to that of conventional ones. In comparison to conventional solar stills, our proposed reflector-enhanced solar still benefits from several improvements, including lower glass temperatures, increased water basing temperatures, and receiving much more solar irradiation. Hence, the proposed system can increase water production from 7.5 L/day to 24 L/day. The results showed that the proposed method is highly effective and could be used in field-scale projects in arid and semi-arid climates.