Navigational safety necessitates careful route monitoring, which includes staying on the planned course. For a ship to achieve effective route monitoring while changing course, a wheel over point (WOP) must be precisely calculated and marked on a charted course. The reason is to warn the watchkeeping officer that the ship must make a course alteration to prevent overshooting the intended route. One of the techniques for appraising the WOP is the advance transfer technique (ATT). During a practical review by means of an electronic and paper chart work exercise of the ATT, this study discovered two research gaps related to the technique. Following that, this study created an improved advance transfer mathematical model (ATMM) by restructuring the use of the ship’s turning circle to overcome the limitations discovered. To validate the improvement of the ATMM over the ATT, data were collected by evaluating both methods using a ship simulator and performing a manoeuvring analysis. The data, specifically the reduction in the cross-track distance (XTD), was validated in three verification stages: compliance with XTL, percentage change, and Mann‒Whitney U test using IBM SPSS. In comparison to the ATT, the ATMM produces better results in terms of the course-keeping capability and it can be implemented as an algorithm in an integrated bridge navigation system for autonomous ship navigation safety.