The investigation of the characterization of Adansonia digitata biomass from pyrolysis in a fixed-bed tubular carbon steel reactor at temperatures of 400℃ to 700℃. Firstly, proximate, ultimate, and heating value analyses of the raw biomass were obtained prior to experimental runs via the fast pyrolysis process; thereafter, the quality of the bio-oil and biochar yields for bioenergy and industrial applications was investigated using the following analyses: higher heating values (HHV), lower heating values (LHV), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). Optimum bio-oil (52.70 wt%) and bio-char (40 wt%) yields were obtained at temperatures of 500 and 400℃, respectively. GC-MS analysis of the yielded biooil revealed a higher percentage of oleic acid, phenol, methanol, and ketone among the fuel compositions, whereas the bio-oil chemical composition includes carbon (70.99%), hydrogen (13.40%), nitrogen (0.54%), oxygen (15.01%), and sulfur (0.06%), flash (81) and pour points (-7) for bio-oil with HHV (30.75 MJ/kg) and LHV (27). The results obtained demonstrated that the properties of products can serve as a waste management strategy, sorbent, soil enhancer, and biofuel industry application.