With the gradual shift of coal mining to deeper levels in recent years, rock burst has become one of the primary dynamic hazards faced in deep mining. It has been shown that the pore structure in rocks affects the mechanical properties, but the relationship with the rock burst phenomenon still needs to be clarified. In this paper, we investigated the causes and effects of pore structure on impact mechanical properties using RFPA2D numerical simulation software, established several numerical models with different porosities and pore diameters, and analyzed the stress-strain curves, the relationships between porosity and pore diameter and each the bursting liability indices of the coal rock body were elaborated, and the fitting equations in the range of porosity (0%~10%) and pore diameter (0.25~2.0 mm) were obtained. The results showed that the increase in porosity and pore diameter effectively attenuated the bursting ability of coal rocks, which has some reference significance for the study of early warning and prevention of rock burst phenomenon.