The approach slab is in the terms of structural behaviour an area element with interaction with a subsoil, where one of its edge is connected thru the hinge on the abutment of the bridge. In a simplified structural schemes it is possible to model this slab element with a hinged connection to the abutment and the subsoil interaction is represented by a spring area under the approach slab. More difficult approach of modelling the reinforced concrete slab and the subsoil interaction is by 3D soil elements with the properties of soil embankment.
In both cases of those linear approaches exists few imperfections, which does not represent the real behaviour. Load from the traffic acts on the slab cyclic. Therefore special problems occur in modelling of those transition areas. By crossing vehicles and its acting in time, continuous consolidation of the soil under the approach slab is being in progress. It can possibly cause creation of the void and consequently loss of a contact between the slab and subsoil.
The paper deals with modelling of the reinforced concrete approach slab and the soil interaction with a nonlinear soil element, and also response of the slab on the cyclic load. All these effects can cause changes in structural scheme, and therefore changes in a strain of the slab member. The model is trying to describe the subsoil consolidation in time. In a connection with that fact, the fatigue failures of the approach slab are examined too.