The technique of soft X-ray appearance potential spectroscopy (APS) has been applied to pyrolytic graphit>e and other carbons. The prominent, sharp satellites in the spectrum are assigned, in agreement with Houston and Park, to a coupling of the CK core hole excitation to strong plasmon emission (first and higher orders of the 7 eV plasmon and first order of the 27 eV plasmon). However, the peak separations of the higher order 7 eV plasmons are found to be not constant. The broad loss peaks are assigned to coupling with interband transitions. Increasing the degree of disorder of the carbon markedly affects the spectrum. The results are discussed in the light of more direct experimental investigations of electronic excitations in graphite, and of rrcent theoretical considerations of plasmon coupling in APS.Die Technik der Schwellenenergie-Spektroskopie (APS) weicher Rontgenstrahlung wurde auf Pyrographit und andere Kohlenstoffarten angewandt. I n ubereinstimmung mit, Houston und Park werden die gefundenen intensiven, schmalen Satelliten im Spektrum auf starlie Kopplung der ,,core hole"-Anregang mit Plasmonenemission (erste und hohere Ordnungen des 7 eV-Plasmons und erste Ordnung des 27 eV-Plasnions) zuruckgefuhrt. Die Abstande zwischen den hijheren Ordnungen des 7 eV-Plasmons sind jedoch nicht konstant. Die breiten Verluste werden durch Kopplung mit Interbandubergingen erklirt. Eine Erhohimg der Unordnung im Kohlenstoff verandert das Spektrum deutlich. Die Ergebnisse werden im Hinblick aiif die direkten experimentellen Untersuchungen von elektronischen Anregungen in Graphit und auf die jungsten theoretischen uberlegungen zur Plasmonenkopplung bei APS diskutiert.
IntroduetionThe technique of appearance potential spectroscopy (APS) [ 1, 21 determines nondispersively the threshold pobential for the appearance of characteristic soft X-rays. Electrons are accelerated onto a solid sample giving rise to Bremsst>rahlung and characteristic lines. If the energy of the incident electrons is scanned, a sharp step is expected in the total X-ray yield a t an energy just large enough to excite a core electron to the Fermi level. The APS features are extracted as peaks using electronic differentiation. Recent interest has focussed on the form and intensity of APS features, because of their dependence on the density of empty conduction band states above the Fermi level. Houston and Park [3] point out that the densities of final states must take into account both the excited core electron and the scattered incident electron. The transition probability then becomes proportional to the product of the density of states a t the core level and the self-convolution of the density of empty states above the Fermi level [4]. This leads to an unsymmetrical peak rather than a simple step in the total X-ray yield, and a negative peak in the first derivative. I n addition Langreth and others [5] predict that t>he non-conservation of "slow charge" associated with production of the core hole will produce strong plasmon effects.