energy G = transformed temperature function / = concentration of heavy component h -plate thickness / = Bessel function / = Bessel function K = hypersonic similarity parameter, M.^ sin a K 2 = similarity parameter, Re*(p (l lp s ) { ' 2 K ff = relaxation parameter, p*u*r*/(pT R )* I = length of model M = Mach number M, = molecular weight of / species m -relaxation parameter, Eq. (10) n = exponent in the viscosity law JUL -T" (Pr.r 2) = average transition probability per one gas-kinetic collision for y* rotational level Pr = Prandtl number p = pressure q = dynamic pressure, {p y ul_ R = asymptotic parameter, 0.75/te*,-Rej = Reynolds number calculated by flow parameters in the nozzle exit cross section, p*u*rj/fj,j Re () = Reynolds number and the main similarity parameter, p y uJ,l[L s Re* = Reynolds number calculated by flow parameters at the critical sphere, p*u*r*/iJi* r = distance from a nozzle exit along the ray r tl = location of the shock wave ("Mach disk") on the jet axis r, f = radius of spherical source Sc = Schmidt number s = exponent in the molecular interaction law T = temperature / = dimensionless temperature function, TITt w = temperature factor, TJT S u = radial velocity component V = transformed velocity function, Eqs. (4) and (6)v' = tangential velocity component, Eq. (1) v = dimensionless velocity, M/M*,-, Eqs. (6) and (8) W = transformed velocity function, Eqs. (4) and (8) X = transformed coordinate, Eqs. (4) and (6) X = drag force x = inverse dimensionless radius, r^/r Y = lift force Z = transformed coordinate, Eq. (8) a = angle of attack /3 = thermal diffusion ratio y = ratio of specific heats 8 = dimensionless plate thickness, hll e = ratio of molecular weights, M 1Ie /M Ar 77 = argument for Bessel functions, Eq. (7) 0 = transformed temperature function, Eq. (8) 0 = angle between the body generatrix and the freestream flow A = expansion parameter, 2w(y -1), Eq. (4) fji = viscosity coefficient £ = deformable coordinate, Eq. (4) p = density r = relaxation time = transformed concentration function, Eq. (6) tp = angle between the ray from a nozzle exit and symmetry axiŝ = transformed concentration function, Eq. (8) a) = expansion parameter, l/[2y -1 -2(y -l)/i], Eq. (4)Subscripts a = ambient media parameter d = "Mach disk" parameter FM = free-molecular-flow parameter / = inviscid gas parameter j = nozzle exit parameter /* = rotational quantum level R = rotational relaxation parameter s = stagnation parameter t = translational temperature parameter w = wall quantity 1 = first-order approximation 3° = freestream quantity + = coordinate, at which gas density is extreme * = critical value parameter