Gas turbines are widely used nowadays for aircraft propulsion and in land-based power generation or in the industrial application. The operating temperature of gas turbine has to be increased in order to increase their effectiveness. Thus, a cooling method known as film cooling is introduced to cool down the high operating temperature of the gas turbine. Film cooling is one of the effective methods in reducing the heat load to a turbine airfoil. This method is cost effective and by far the most common and widely researched method in the industry. Film cooling effectiveness plays a vital role in modern gas turbine technology. This present study will focus on sister holes that are attached to the primary holes at shallow angle of 30°, with 4 different blowing ratios ranging from 0.5 to 2.0. The roles of the different in blowing ratios are to observe the different values of film effectiveness presented by the sister holes design and to select the most effective blowing ratio that suits the design at shallow angle. From the results obtained, the usage of sister holes with shallow angle further increases the film cooling effectiveness particularly at low blowing ratio.