This paper presents an experimental investigation of the plugging efficiency of aggregate pouring through multiple boreholes under flowing water conditions into an inundated mine tunnel. Aggregate pouring into an inundated mine tunnel has been widely used and constitutes the premise for the salvage of flooded underground mines through further grouting. However, corresponding in-depth research is relatively limited due to the concealment of underground engineering. A visual experimental setup for aggregate pouring into a tunnel replica was built based on the theory of similarity between sediment movement and slurry pipeline transportation. Four factors, each with four levels, including the aggregate particle size (0.25–0.5, 0.5–1, 1–2 and 2–5 mm), distance between boreholes (0.5, 0.75, 1 and 1.5 m), initial water flow rate (0, 1.5 × 10−2 m/s, 2.4 × 10−2 m/s and 3 × 10−2 m/s) and tunnel inclination (0°, 3°, 5° and 8°) were selected in orthogonal experiments to investigate the plugging efficiency. Range and variance analysis of the four-level orthogonal array experimental results indicated that the factors influencing the plugging efficiency, varying between 83.96 and 98.15%, could be ranked in descending order as the initial water flow rate, aggregate particle size, distance between boreholes and tunnel inclination. The former two factors yielded a more significant influence than that of the latter two factors. The measured water pressure difference ranging from 16 to 32% between the front and back ends of the formed aggregate mass in the pouring process indicated that there remained a high resistance to water flow, even if the aggregate mass was not capped but reached a certain length. Plugging criteria for aggregate pouring into horizontal and inclined tunnels were then proposed. Moreover, the optimal distance between boreholes to form an effective bulkhead was determined, which could be defined as the distance between boreholes when the aggregate mass exhibits the fastest build-up and the plugging capacity is reached.