Increasing of the efficiency of convective cooling of the inner surface of a short duct by changing its geometry was studied by the use of electrochemical limiting current technique (ELDCT). The duct consisted of seven identical, cylindrical segments. The changes of the duct geometry were obtained by mutual displacement of neighbouring segments, towards the radial direction. Mean values of the mass transfer coefficient for each segment and friction losses for the whole channel were measured for Reynolds numbers spanning the range 7700-35300 at the five values of displacement parameter. The results were used for estimation of cooling efficiency. Recommended values of displacement were determined to point the favourable conditions of heat/mass transfer in the duct. The results may be used, e.g. in the design of heat exchangers and channels for cooling of turbine blades and electronic equipment.