Supercavitation is a phenomenon in which the cavity covers the entire underwater vehicle. The purpose of this paper is to compare and analyze the thermal effect on the cavity characteristics by changing the ventilated gas temperature through computational analysis. For this study, a homogeneous mixture model based on the 3D Navier-Stokes equation was used. As a phase change model, it is its own code considering both pressure change and temperature change. A dimensionless number <i>T<sub>m</sub></i> was presented to analyze the numerical results, and as the <i>T<sub>m</sub></i> increased, the cavity length increased by about 3.6 times and the cavity width by about 3.3 times at 393.15 K compared to room temperature. Analyzing these thermal effects, it was confirmed that rapid heat exchange and heat transfer between the gas phase and the liquid phase occurred at the location where the ventilated gas was sprayed, affecting the cavity characteristics. In addition, it can be confirmed that the initial cavity surface becomes unstable as the ventilated gas temperature increases, and it can be confirmed based on the numerical analysis results that the critical temperature at which the cavity surface becomes unstable is 373.15 K.