This paper describes a computational investigation on the response of thin wall structures due to dynamic compression loading. In this paper, the tubes subjected for both direct and oblique loading. Several different cross-sectional structures have been studied to specify the best one. Initially the tubes were subjected to direct loading, and then the tubes were subjected to oblique loading. After that, the tubes were compared to obtain the cross section which fulfills the performance criteria. The selection was based on multi criteria decision making (MCDM) process. The performance parameters taken in this study are the specific energy absorbed by the tube for both direct and oblique, crush force efficiency and the ratio between the energy absorbed by direct and oblique loading. Trigger and foam filled are implemented to study their effects on the parameters used. The study used the magnesium alloy as a material to study potentially the possibility and ability of using the magnesium alloy in the energy absorber parts since the magnesium has lighter weight.