2019
DOI: 10.1080/01932691.2018.1461635
|View full text |Cite
|
Sign up to set email alerts
|

Experimental measurement and modeling study for estimation of wax disappearance temperature

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
4
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(6 citation statements)
references
References 25 publications
0
4
0
2
Order By: Relevance
“…Daridon et al (2002), Ji et al (2004), Milhet et al (2005), Pauly et al (2007Pauly et al ( , 2010Pauly et al ( , 2012, Ghanaei et al (2007Ghanaei et al ( e 2014 desenvolveram modelos experimentais e termodinâmicos com intuito de prever a temperatura de aparecimento (WAT), de desaparecimento (WDT) e a quantidade de parafina precipitada (m%). Devido aos altos custos e às dificuldades atreladas à mensuração de dados experimentais, além da falta de precisão dos modelos termodinâmicos para preverem a temperatura de desaparecimento da parafina, o desenvolvimento de métodos computacionais tornou-se imprescindível na resolução desse tipo de problema (RAHIMPOUR et al, 2013;JALALNEZHAD et al, 2016;MANSOURPOOR et al, 2019). Métodos de inteligência artificial como rede neural artificial (ou, no inglês, artificial neural network -ANN), máquina de vetor de suporte (ou, no inglês, support vector machine -SVM), algoritmo genético (ou, no inglês, genetic algorithm -GA) e lógica difusa (ou, no inglês, fuzzy logic -FL) encontraram muitas aplicações em problemas de regressão e classificação de forma precisa, sendo ferramentas poderosas e confiáveis para análise de dados em problemas de engenharia (ZHANG et al, 2017;MANSOURPOOR et al, 2019).…”
Section: Introductionunclassified
“…Daridon et al (2002), Ji et al (2004), Milhet et al (2005), Pauly et al (2007Pauly et al ( , 2010Pauly et al ( , 2012, Ghanaei et al (2007Ghanaei et al ( e 2014 desenvolveram modelos experimentais e termodinâmicos com intuito de prever a temperatura de aparecimento (WAT), de desaparecimento (WDT) e a quantidade de parafina precipitada (m%). Devido aos altos custos e às dificuldades atreladas à mensuração de dados experimentais, além da falta de precisão dos modelos termodinâmicos para preverem a temperatura de desaparecimento da parafina, o desenvolvimento de métodos computacionais tornou-se imprescindível na resolução desse tipo de problema (RAHIMPOUR et al, 2013;JALALNEZHAD et al, 2016;MANSOURPOOR et al, 2019). Métodos de inteligência artificial como rede neural artificial (ou, no inglês, artificial neural network -ANN), máquina de vetor de suporte (ou, no inglês, support vector machine -SVM), algoritmo genético (ou, no inglês, genetic algorithm -GA) e lógica difusa (ou, no inglês, fuzzy logic -FL) encontraram muitas aplicações em problemas de regressão e classificação de forma precisa, sendo ferramentas poderosas e confiáveis para análise de dados em problemas de engenharia (ZHANG et al, 2017;MANSOURPOOR et al, 2019).…”
Section: Introductionunclassified
“…It is evident that due to the quaternary system’s complexity, WAT measuring for only five different mixtures of a quaternary system is not sufficient to estimate system behavior. Mansourpoor et al 18 experimentally measured the WATs of 12 samples of Iranian crude oils and condensates using DSC and viscometry methods. They used an artificial neural network (ANN) model to estimate the WDTs of crude oils.…”
Section: Introductionmentioning
confidence: 99%
“…After that, with the continuous precipitation of wax crystals, the solid particles will be gradually connected to form a spatial network structure, and the crude oil is wrapped in its pores, which results in a deterioration of flows and eventually causes the blockage of the pipeline. It is concluded that the wax deposition process is influenced by many factors, such as crude oil composition, pipe wall material, temperature, , flow velocity, and flow pattern. , For the wax deposition mechanism, the classical theories include molecular diffusion, , shear dispersion, , Brownian motion, , and gravity deposition. , Recently, with the further development of the wax-deposited research, the mechanisms of shear stripping, gelation (emulsified nucleation) and aging was proposed. , Many scholars have performed research regarding those mechanisms. Hoffmann et al and Mehrotra et al found that the carbon number distribution on the surface of wax deposition layer is closer to that of the flowing oil when the flow rate is low and the water content is high.…”
Section: Introductionmentioning
confidence: 99%
“…13,14 For the wax deposition mechanism, the classical theories include molecular diffusion, 5,15−17 shear dispersion, 12,18 Brownian motion, 19,20 and gravity deposition. 15,21 Recently, with the further development of the wax-deposited research, the mechanisms of shear stripping, 22 gelation (emulsified nucleation) 23−25 and aging was proposed. 7,26−28 Many scholars have performed research regarding those mechanisms.…”
Section: ■ Introductionmentioning
confidence: 99%
See 1 more Smart Citation