in Wiley Online Library (wileyonlinelibrary.com)The recent global agreement signed in Kigali to limit the use of hydrofluorocarbons (HFCs) as refrigerants, starting by 2019, has promoted an active area of research toward the development of low global warming potential (GWP) new refrigerants. Hydrofluoroolefins (HFOs) have been proposed as a low GWP alternative to third generation HFC refrigerants, but further work on fully characterizing them and their blends with other compounds is still required to fully assess their performance to replace the ones in current use. In this work, the polar and perturbed chain statistical associating fluid theory coupled with the density gradient theory is used to predict the vapor-liquid equilibrium, isobaric heat capacity, speed of sound, and surface tension of selected HFC and HFO-based commercial azeotropic blends as fourth generation low GWP refrigerants, seeking for a predictive tool for these properties.