Using intravital microscopy in a chronic in vivo mouse model, we studied the demarcation of myocutaneous flaps and evaluated microvascular determinants for tissue survival and necrosis. Chronic ischemia resulted in a transition zone, characterized by a red fringe and a distally adjacent white falx, which defined the demarcation by dividing the proximally normal from the distally necrotic tissue. Tissue survival in the red zone was determined by hyperemia, as indicated by recovery of the transiently reduced functional capillary density, and capillary remodeling, including dilation, hyperperfusion, and increased tortuosity. Angiogenesis and neovascularization were not observed over the 10-day observation period. The white rim distal to the red zone, appearing as "falx lunatica," showed a progressive decrease of functional capillary density similar to that of the necrotic distal area but without desiccation, and thus transparency, of the tissue. Development of the distinct zones of the critically ischemic tissue could be predicted by partial tissue oxygen tension (Pt(O(2))) analysis by the time of flap elevation. The falx lunatica evolved at a Pt(O(2)) between 6.2 +/- 1.3 and 3.8 +/- 0.7 mmHg, whereas tissue necrosis developed at <3.8 +/- 0.7 mmHg. Histological analysis within the falx lunatica revealed interstitial edema formation and muscle fiber nuclear rarefaction but an absence of necrosis. We have thus demonstrated that ischemia-induced necrosis does not demarcate sharply from normal tissue but develops beside a fringe of tissue with capillary remodeling an adjacent falx lunatica that survives despite nutritive capillary perfusion failure, probably by direct oxygen diffusion.