We perform experiments and numerical simulations to investigate spatial distribution of pressure in a sheared dilatant fluid of the Taylor-Couette flow under a constant external shear stress. In a certain range of shear stress, the flow undergoes the shear thickening oscillation around 20 Hz. We find that, during the oscillation, a localized thickened band rotates around the axis with the flow. Based upon experiments and numerical simulations, we show that a major part of the thickened band is under negative pressure even in the case of discontinuous shear thickening, which indicates that the thickening is caused by Reynolds dilatancy; the dilatancy causes the negative pressure in interstitial fluid, which generates contact structure in the granular medium., then frictional resistance hinders rearrangement of the structure and solidifies the medium.