By modulating the intensity of laser light before the rotating groundglass, the well-known pseudothermal light source can be modified into superbunching pseudothermal light source, in which the degree of second-order coherence of the scattered light is larger than 2. With the modulated intensities following binary distribution, we experimentally observed the degree of second-and third-order coherence equaling 20.45 and 227.07, which is much larger than the value of thermal or pseudothermal light, 2 and 6, respectively. Numerical simulation predicts that the degree of second-order coherence can be further improved by tuning the parameters of binary distribution. It is also predicted that the quality of temporal ghost imaging can be improved with this superbunching pseudothermal light. This simple and efficient superbunching pseudothermal light source provides an interesting alternative to study the second-and higher-order interference of light in these scenarios where thermal or pseudothermal light source were employed.