2021
DOI: 10.1186/s40658-021-00390-7
|View full text |Cite
|
Sign up to set email alerts
|

Experimental phantom evaluation to identify robust positron emission tomography (PET) radiomic features

Abstract: Background Radiomics analysis usually involves, especially in multicenter and large hospital studies, different imaging protocols for acquisition, reconstruction, and processing of data. Differences in protocols can lead to differences in the quantification of the biomarker distribution, leading to radiomic feature variability. The aim of our study was to identify those radiomic features robust to the different degrading factors in positron emission tomography (PET) studies. We proposed the use… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(12 citation statements)
references
References 33 publications
(43 reference statements)
0
10
0
2
Order By: Relevance
“…Moreover, these studies identified parameters reflecting tumor heterogeneity, albeit not identical to the predictive RFs identified in our study. Possible explanations are the above-mentioned differences in inclusion criteria, patient cohort, and segmentation for RFs of total tumor burden in baseline PET-CT. An advantage of PET RFs is their reproducibility and robustness to all degrading factors [ 17 ].…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Moreover, these studies identified parameters reflecting tumor heterogeneity, albeit not identical to the predictive RFs identified in our study. Possible explanations are the above-mentioned differences in inclusion criteria, patient cohort, and segmentation for RFs of total tumor burden in baseline PET-CT. An advantage of PET RFs is their reproducibility and robustness to all degrading factors [ 17 ].…”
Section: Discussionmentioning
confidence: 99%
“…The extraction of high-throughput digital and quantitative imaging information and its conversion from encrypted imaging data to mineable numerical data allows its Radiomics analysis. Radiomics represents a groundbreaking new technique to analyze radiological data including the use of artificial intelligence that provides important insights into cancer phenotype and tumor heterogeneity [ 16 , 17 , 18 ]. In contrast to results on standard imaging assessment, several recently published studies found promising results on radiomic feature (RF)-based analysis in oncologic imaging for outcome prediction in several entities, including markers of tumor heterogeneity [ 16 , 19 , 20 , 21 ].…”
Section: Introductionmentioning
confidence: 99%
“…En general, el porcentaje de radiómicas robustas que hemos obtenido en 68 Ga-PSMA-PET (38%) ha sido menor que el observado previamente para radiómicas de TC robustas con respecto a distintos equipos (45%), 24 como era de esperar dada la peor resolución y dado el mayor ruido asociados con la imagen PET. En previas investigaciones, las características radiómicas que en este estudio han dado lugar a modelos radiómicos han demostrado ser también robustas a la presencia de artefactos en los mapas TC para la corrección de atenuación 25 y al movimiento de la lesión. 26 Además, todas excepto QVL2, han demostrado ser comparables para distintos métodos automáticos de segmentación de lesiones heterogéneas, 25,26 lo que favorece la reproducibilidad de los modelos.…”
Section: Discussionunclassified
“…En previas investigaciones, las características radiómicas que en este estudio han dado lugar a modelos radiómicos han demostrado ser también robustas a la presencia de artefactos en los mapas TC para la corrección de atenuación 25 y al movimiento de la lesión. 26 Además, todas excepto QVL2, han demostrado ser comparables para distintos métodos automáticos de segmentación de lesiones heterogéneas, 25,26 lo que favorece la reproducibilidad de los modelos.…”
Section: Discussionunclassified
“…In order to prevent misinterpretation of the descriptive models developed based on PET images, the variability of PET‐based RFs should be addressed properly. [ 78 ] Extensive studies are currently underway on the acquisition of dynamic PET data, which encompasses dynamic whole‐body imaging, as well as on the extraction of RFs from various imaging modalities.…”
Section: Radiomics Workflowmentioning
confidence: 99%