We present direct numerical simulations of a three-layer Rayleigh–Taylor instability (RTI) problem with a configuration based on the experiments of Suchandra & Ranjan (J. Fluid Mech., vol. 974, 2023, A35) and Jacobs & Dalziel (J. Fluid Mech., vol. 542, 2005, pp. 251–279). The problem consists of a layer of light fluid between two layers of heavy fluid with an Atwood number of 0.3. These simulations are first validated through comparison with available experimental data. The validated simulations are then utilized to analyse statistics in this three-component flow. First, length scales are examined utilizing spectra and two-point spatial correlations of velocity and species concentration fluctuations. Next, joint probability density functions (p.d.f.s) of species concentration are compared against several model p.d.f.s representing generalizations of the bivariate beta distribution. Notably, the joint p.d.f.s do not appear to be accurately described by a Dirichlet distribution, indicating the marginal distributions do not conform to a beta distribution. Finally, similarity of the present configuration to three-component mixing found in inertial confinement fusion (ICF) applications is exploited to develop and validate an improved model for the impact of multicomponent mixing on thermonuclear (TN) reaction rates. A single time instant from the present simulations is chosen for a TN burn calculation under the hypothetical assumption of ICF materials and temperatures. Total TN output from this second calculation is then compared against the prediction of the improved model. The new model is found to accurately predict TN reaction rates in both premixed and non-premixed configurations.