A design strategy of a test rig for the dynamic behavior of a rotor supported by two full-scale journal bearings was proposed. A special part, called “intermediate”, was set up to allow the convenient changing of the bearing structure. An electromagnetic exciter was used to obtain the natural frequency, and software running on the Microsoft Visual C++6.0 operating platform was programmed for signal acquisition and analysis. Then, the test rig was constructed. The field dynamic balance and natural frequency testing were carried out. The journal orbits and frequency spectrums were used to measure the dynamic response of different structure full-scale journal bearings. The experimental results showed that an acceptable balance effect was achieved after the field dynamic balance. The natural frequency of the rig agreed with the numerical results. Stability was improved through changing the bearing structure. This revealed that this rig can effectively test the dynamic behavior of a rotor supported by a full-scale journal bearing system, which is critical to the design of journal bearings.