The properties of a large number of concrete infrastructures in China are deteriorating year by year, raising the need for repairing and strengthening these infrastructures. By introducing waterborne polymers into a cement concrete system, brittle cracks and easy bonding performance defects of concrete can be compensated for to form a long-life, semi rigid, waterborne polymer-modified cementitious repair material with a promising development prospect. This paper investigates the modification effect of polymer emulsions on ordinary cement mortar. Our research mainly focused on the physical and mechanical properties, durability, microstructure and application status of waterborne polymer-modified cementitious composites. Literature studies show that with the increase in waterborne polymer content (0 wt%~20 wt%), the performance of cement mortar significantly improves, which in turn expands its application range. Compared with ordinary cement mortar, the introduction of waterborne polymers blocks some of the pores in the cement to a certain extent, thus improving its permeability, freeze–thaw resistance and durability. Finally, this paper describes the application of waterborne polymer–cementitious composites in western saline soil environments, as well as discusses the prospects of their development.