One of the major challenges in constructing effective and economically viable wave energy parks is to reduce the large fluctuations in power output. In this paper, we study different methods of reducing the fluctuations and improve the output power quality. The parameters studied include the number of devices, the separating distance between units, the global and local geometry of the array, sea state and incoming wave direction, and the impact of including buoys of different radii in an array. Our results show that, e.g., the fluctuations as well as power per device decrease strictly with the number of interacting units, when the separating distance is kept constant. However, including more devices in a park with fixed area will not necessarily result in lowered power fluctuations. We also show that varying the distance between units affects the power fluctuations to a much larger extent than it affects the magnitude of the absorbed power. The fluctuations are slightly lower in more realistic, randomized geometries where the buoys tend to drift slightly off their mean positions, and significantly lower in semi-circular geometries as opposed to rectangular geometries.