Traveling-wave antennas consist of transmission-line structures that radiate. We develop a unified theory for end-fire line antennas because length and propagation constant along the structure determine most of their properties. To first order, length determines gain and bandwidth. The size and shape of the structure produce secondary effects such as polarization nulls and narrower beamwidths. Most of these structures are slow wave-transmission structures that bind waves to it and radiate at discontinuities. We use surface-wave structures to radiate end-fire beams and leaky wave structures to radiate beams at an angle to the axis of the line source. In both cases there are planar configurations that have their uses, but in this chapter we concentrate on long, thin geometries. We combine leaky wave line-source radiators, such as slotted rectangular waveguides, into planar arrays, but the line source remains the building block.We make traveling-wave antennas from structures that guide waves. Surface-wave structures bind the power to the transmission line and radiate from discontinuities such as bends or dimensional changes. In some cases we analyze the surface wave as radiating throughout its extent on the transmission line. Both methods provide insight. Leaky wave antennas carry waves internally, such as a waveguide, and radiate at openings that allow power to escape. The radiation mechanism differs in the two cases, but we use similar mathematics to describe both types. We may have trouble distinguishing the radiation mode because the structures may be similar because with small changes in structure, some antennas can radiate in either mode. We separate traveling-wave antennas from other antennas by the presence of a wave traveling along the structure, with most of its power propagating in a single direction.We divide antennas by their structure: line and planar. We usually analyze planar structures as being infinite in the direction normal to the wave propagation. Similarly, we usually ignore the diameter of line sources in a first-order analysis. The diameter is important for determining the mode structure, but to first order we calculate patterns Modern Antenna Design, Second Edition,