Determinar la estabilidad de los controladores, ya sea mediante simulaciones o mediante técnicas analíticas, es vital en su diseño e implantación. El método analítico de estabilidad en el sentido de Lyapunov requiere encontrar una función candidata, como criterio suficiente pero no necesario para tal fin. Esta función candidata es elusiva para los controladores borrosos. Se propone, como posible solución a este problema, cuantificar la estabilidad de los controladores borrosos mediante el exponente de Lyapunov (EL) calculado numéricamente. Las series de tiempo de la cuales se calculan los exponentes de Lyapunov son obtenidas de la salida de diversos controladores borrosos tipo Mamdani en lazo cerrado con la dinámica de la planta no lineal estabilizada en una región de operación admisible. Los experimentos fueron llevados al cabo mediante la implantación del método numérico en la plataforma MATLAB, integrándolo con datos provenientes de la simulación de diversos controladores borrosos. La planta a controlar es el sistema carro-péndulo invertido modelado con la formulación Euler-Lagrange. En cada experimento se obtuvo la serie de tiempo correspondiente a la señal de control y se calculó el exponente de Lyapunov. Aunque se observan variaciones en magnitud, el exponente calculado resulta negativo en todos los casos. Esto indica que los controladores difusos tipo Mamdani empleados son sistemas disipativos. Como trabajo futuro se esboza el empleo del EL en control adaptable.