A leader-follower synchronization output feedback control scheme is presented for the ship replenishment problem where only positions are measured. No mathematical model of the leader ship is required, and the control scheme relies on nonlinear observers to estimate velocity and acceleration of all ships to realize the feedback control law. The scheme yields semi-global uniform ultimate boundedness of the closed-loop errors. The bound is a function of the main ship acceleration, and under the assumption of zero main ship acceleration the closed-loop errors are semi-globally exponentially converging. The results are verified through experiments on a model-scale ship. r