This adverse outcome pathway links inhibition of aromatase activity in teleost fish during gonadogenesis to increased differentiation to testis resulting in a male-biased sex ratio in the population, and ultimately, reduced population sustainability. Most gonochoristic fish species develop either as males or females and do not change sex throughout their life span. However, in species where sexual differentiation is controlled at least to some degree by environmental factors, there can be a window of development during gonadal differentiation that is sensitive to a variety of exogenous conditions, including exposure to some chemicals. For example, treatment with sex steroids in conjunction with the period of sexual differentiation has been showed to favor ovary or testis development in fish exposed to estrogens or androgens, respectively. Altered synthesis and regulation of endogenous steroids can also affect sexual differentiation in fish. In most vertebrate taxa, aromatase (cytochrome P450 [CYP]19a1) is the rate-limiting enzyme for the conversion of 17β-estradiol (E2) from testosterone (T). Endocrine-active chemicals such as fadrozole, letrozole and exemestane (pharmaceuticals) or prochloraz and propiconazole (fungicides) inhibit aromatase activity. Exposure of some fish species to aromatase inhibitors during sex differentiation can reduce endogenous E2 synthesis, thereby resulting in phenotypic males, the default sex in the absence of estrogen signaling during gonadal differentiation. Given the critical role of female fecundity in determining total numbers of offspring, the resultant male-biased sex ratio can reduce population size, especially if sustained over multiple generations. 5
Table of contentsAdverse Outcome Pathway on Aromatase inhibition leading to male-biased sex ratio via impacts on gonad differentiation .