The quark potential model for mesons and its extension for hybrid mesons are used to study the effects of radial excitations on the masses, sizes and radial wave functions at the origin for conventional and hybrid charmonium mesons. These results can help in experimentally recognizing hybrid mesons. The properties of conventional and hybrid charmonium mesons are calculated for the ground and radially excited states using the shooting method to numerically solve the required Schrödinger equation for the radial wave functions. We compare our results with the experimentally observed masses and theoretically predicted results of the other models. Our results have implications for scalar form factors, energy shifts, and polarizabilities of conventional and hybrid mesons. The comparison of masses of conventional and hybrid charmonium meson with the masses of recent discovered XYZ-particles is also discussed.