ABSTRACT:Progress in the understanding of the volumes and viscosities of granitic and related pegmatitic melts generated by experimental studies are reviewed. The results of a series of investigations of the volumes and viscosities of melts derived from a haplogranitic base composition, HPG8, located near the 2 kbar water-saturated minimum melt composition in the albite—orthoclase—silica system are discussed. Melt volumes, obtained using a combination of dilatometric and calorimetric methods at 1 atm and relatively low temperatures yield an internally consistent set of partial molar volumes for 18 components in granitic melts. These partial molar volumes, combined with an estimate for water, allow the estimation of melt densities for granitic and related pegmatitic magmas.Melt viscosities, obtained using a combination of high and low range viscometry techniques, provide a template for the estimation of melt viscosities in more complex natural systems. The parameterisation of the non-Arrhenian temperature-dependence of the viscosity of such melts is presented, together with some structural implications of the variation of melt viscosity with temperature and composition. Outstanding questions related to the PVT equation of state of granitic melts and to the mechanical response to shear stresses are discussed, with an outlook for the experimental solutions to those questions in the next few years.