We report on a self-adaptive waveform centroid algorithm that combines the selection of double-scale data and the intensity-weighted (DSIW) method for accurate LiDAR distance–intensity imaging. A time window is set to adaptively select the effective data. At the same time, the intensity-weighted method can reduce the influence of sharp noise on the calculation. The horizontal and vertical coordinates of the centroid point obtained by the proposed algorithm are utilized to record the distance and echo intensity information, respectively. The proposed algorithm was experimentally tested, achieving an average ranging error of less than 0.3 ns under the various noise conditions in the listed tests, thus exerting better precision compared to the digital constant fraction discriminator (DCFD) algorithm, peak (PK) algorithm, Gauss fitting (GF) algorithm, and traditional waveform centroid (TC) algorithm. Furthermore, the proposed algorithm is fairly robust, with remarkably successful ranging rates of above 97% in all tests in this paper. Furthermore, the laser echo intensity measured by the proposed algorithm was proved to be robust to noise and to work in accordance with the transmission characteristics of LiDAR. Finally, we provide a distance–intensity point cloud image calibrated by our algorithm. The empirical findings in this study provide a new understanding of using LiDAR to draw multi-dimensional point cloud images.