The Eddy Current Flow Meter (ECFM) is a commonly employed inductive sensor for assessing the local flow rate or flow velocity of liquid metals with temperatures up to 700 ∘C. One limitation of the ECFM lies in its dependency on the magnetic Reynolds number for measured voltage signals. These signals are influenced not only by the flow velocity but also by the electrical conductivity of the liquid metal. In scenarios where temperature fluctuations are significant, leading to corresponding variations in electrical conductivity, it becomes imperative to calibrate the ECFM while concurrently monitoring temperature to discern the respective impacts of flow velocity and electrical conductivity on the acquired signals. This paper introduces a novel approach that enables the concurrent measurement of electrical conductivity and flow velocity, even in the absence of precise knowledge of the liquid metal’s conductivity or temperature. This method employs a Look-Up-Table methodology. The feasibility of this measurement technique is substantiated through numerical simulations and further validated through experiments conducted on the liquid metal alloy GaInSn at room temperature.