Summary
The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. This paper provides an overview of solar thermoelectric (TE) cooling systems. Thus, this review presents the details referring to TE cooling parameters and formulations of the performance indicators and focuses on the development of TE cooling systems in recent decade with particular attention on advances in materials and modeling and design approaches. Additionally, the TE cooling applications have been also reviewed in aspects of electronic cooling, domestic refrigeration, air conditioning, and power generation. Finally, the possibility of solar TE cooling technologies application in “nearly zero” energy buildings is briefly discussed, and some future research directions are included. This research shows that TE cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes.