Atmospheric pressure, laminar, premixed, fuel-rich flames of n-heptane/oxygen/argon and n-heptane/oxygenate/oxygen/argon were studied at an equivalence ratio of 1.97 to determine the effects of oxygenate concentration on species mole fractions. The oxygen weight percents in n-heptane/oxygenate mixtures were 2.7 and 3.4. Three different fuel oxygenates (i.e. MTBE, methanol, and ethanol) were tested. A heated quartz micro-probe coupled to an on-line gas chromatography/mass spectrometry has been used to establish the identities and absolute concentrations of stable major, minor, and trace species by the direct analysis of samples, withdrawn from the flames. The oxygenate addition has increased the maximum flame temperatures and reduced the mole fractions of CO, low-molecular-weight hydrocarbons, aromatics, and polycyclic aromatic hydrocarbons. The reduction in mole fractions of aromatic and polycyclic aromatic hydrocarbon species by an increase in oxygenate concentration was more significant. q