A liquid desiccant dehumidification cooling system is a promising, energy-saving, high-efficiency, environmentally friendly technology that maintains thermal comfort effectively indoors by utilizing renewable energy sources or waste heat to enhance system efficiency. In this research, a small-scale (6 kW cooling capacity) hybrid liquid desiccant air-conditioning system (HLDAC) is proposed to evaluate the dehumidification performance of a non-corrosive potassium formate (KCOOH) solution. For this, four input parameters, namely, inlet air flow rate, inlet desiccant temperature, inlet desiccant concentration, and inlet specific air humidity, were selected. Moreover, the different combinations of experiments were designed by employing response surface methodology (RSM) to evaluate the dehumidification performance parameters, namely, dehumidifier latent heat load, coefficient of performance of hybrid system, and moisture removal rate (MRR). Further, a comparative performance analysis between the hybrid system and a standalone vapor compression system (VCS) unit was carried out. The result showed a remarkable increase in coefficient of performance, which was observed at about 28.48% over the standalone VCS unit. Furthermore, the economic assessment of the proposed hybrid system is presented in this paper. Finally, from the economic analysis, it was concluded that the hybrid system had a payback time of 2.65 years compared to the VCS unit.