The heat transfer-flow characteristics of turbulent flow inside corrugated channels heated by constant heat flux are numerically investigated. The rate of heat transfer, pressure drop, and performance evaluation criterion is determined for smooth channel and various designs of corrugated channels at the Reynolds number ranged from 5000 to 60,000. The effect of rib arrangement distributions of inward, outward, and inward-outward ribs are examined. The various rib configurations of corrugated channels are also tested. In addition, the influences of rib roughness parameters (height, pitch, and width) and rib shapes (semicircular, trapezoidal, and rectangular) are researched. The Reynolds-averaged Navier-Stokes equations (RANS) are used to model the governing flow equations. The computational model is validated through a reasonable agreement between the present numerical results and the outcomes of related works. For different geometrical and operating conditions, the results revealed that the rate of heat exchange in corrugated channels exceeds higher than that of smooth ones but with additional pressure loss. Moreover, the rib arrangements, rib configuration, and rib roughness parameters exhibit a relatively significant effect on the performance of the corrugated channels. On the other hand, the influence of the rib shapes seems to be small.