Spectra of even-parity highly excited states of the Sm atom have been systematically studied using the two-color three-step excitation and photoionization detection method. With three different excitation paths distinguished by three different intermediate states with the 4f 6 6s6p configuration, the atom is resonantly excited to given highly excited states in the energy region between 30 040 and 38 065 cm −1 , where it is detected by photoionization. The wavelength of the second laser is scanned from 440 to 700 nm, while that of the first laser is fixed at 638.96, 636.92 or 627.50 nm. Based on precise calibration of the wavelength, the energy levels of 198 even-parity states are determined with the relative line intensities of the related transitions. A unique value of J, the total angular momentum, is assigned to all detected states by comparing the three spectra obtained with the different excitation paths. Except that the energy levels of 113 states are confirmed in this work, the rest of the information mentioned above has not been previously reported.