Tailings dams are structures that store both tailings and water, so almost all tailings dam accidents are water related. This paper investigates a tailings dam’s failure pattern and damage development under flood conditions by conducting a 1:100 large-scale tailings dam failure model test. It also simulates the tailings dam breach discharge process based on the breach mode using FLOW-3D software, and the extent of the impact of the dam failure debris flow downstream was derived. Dam failure tests show that the form of dam failure under flood conditions is seepage failure. The damage manifests itself in the form of flowing soil, which is broadly divided into two processes: the seepage stabilization phase and the flowing soil development damage phase. The dam failure test shows that the rate of rise in the height of the dam saturation line is faster and then slower. The order of the saturation line at the dam face is second-level sub-dam, third-level sub-dam, first-level sub-dam, and fourth-level sub-dam. The final failure of the tailings dam is the production of a breach at the top of the dam due to the development of the dam’s fluid damage zone to the dam top. The simulated dam breach release results show that by the time the dam breach fluid is released at 300 s, the area of over mud has reached 95,250 square meters. Local farmland and roads were submerged, and other facilities and buildings would be damaged to varying degrees. Based on the data from these studies, targeted measures for rectifying hidden dangers and preventing dam breaks from both technical and management aspects can be proposed for tailings dams.