Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lateral spreading has historically caused extensive pile failure in liquefaction‐prone areas during strong earthquakes. A critical design scenario involves piles embedded in lateral spreading ground composed of a nonliquefied soil crust overlying a liquefied layer; it is critical because both layers can exert loads on the piles. Different thicknesses of the liquefied soil and the upper nonliquefied crust may engender different pile response patterns. Accordingly, to investigate factors influencing the lateral responses of a single pile embedded in liquefied ground with a nonliquefied crust, we conduct parametric analyses. The effects of liquefied and nonliquefied soil thicknesses are analyzed first, followed by those of pile‐head rotational restraint, pile diameter, and lateral spreading displacement. We observe two main pile response patterns for various liquefied soil thicknesses. The ground can be categorized into thin or thick liquefied ground depending on whether its liquefied soil thickness is less or greater than a critical value, namely, critical liquefied soil thickness; this critical thickness is dependent on the pile‐head rotational restraint, pile diameter, and lateral spreading displacement. The difference in the patterns stems from the varying roles of the upper nonliquefied soil layer during lateral spreading. For the thin liquefied ground, the nonliquefied layer contributes to adding lateral spreading force; therefore, the displacement, moment, and shear force responses of the pile increase with the nonliquefied soil thickness. However, for the thick liquefied ground, the nonliquefied layer provides resistance to lateral spreading; therefore, the maximum displacement, moment, and shear force of the pile initially decreases and then gradually increases with the nonliquefied soil thickness.
Lateral spreading has historically caused extensive pile failure in liquefaction‐prone areas during strong earthquakes. A critical design scenario involves piles embedded in lateral spreading ground composed of a nonliquefied soil crust overlying a liquefied layer; it is critical because both layers can exert loads on the piles. Different thicknesses of the liquefied soil and the upper nonliquefied crust may engender different pile response patterns. Accordingly, to investigate factors influencing the lateral responses of a single pile embedded in liquefied ground with a nonliquefied crust, we conduct parametric analyses. The effects of liquefied and nonliquefied soil thicknesses are analyzed first, followed by those of pile‐head rotational restraint, pile diameter, and lateral spreading displacement. We observe two main pile response patterns for various liquefied soil thicknesses. The ground can be categorized into thin or thick liquefied ground depending on whether its liquefied soil thickness is less or greater than a critical value, namely, critical liquefied soil thickness; this critical thickness is dependent on the pile‐head rotational restraint, pile diameter, and lateral spreading displacement. The difference in the patterns stems from the varying roles of the upper nonliquefied soil layer during lateral spreading. For the thin liquefied ground, the nonliquefied layer contributes to adding lateral spreading force; therefore, the displacement, moment, and shear force responses of the pile increase with the nonliquefied soil thickness. However, for the thick liquefied ground, the nonliquefied layer provides resistance to lateral spreading; therefore, the maximum displacement, moment, and shear force of the pile initially decreases and then gradually increases with the nonliquefied soil thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.